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An analysis is made of the influence of viscosity and thermal conduc-
tivity of a compressible fluid on the process of dissipation of the me-
chanical energy of a stream decelerated in a region where its direction
changes.

In the literature relating to local resistance, turbu-
lence is considered to be the fundamental and unique
factor responsible for creating resistance when there
is a change in direction of the stream (both for incom-
pressible and for compressible fluids), The impossi~
bility of a mathematical analysis of its influence on the
process of mechanical energy dissipation has led fo
the calculation of local resistance with the aid of ex-
perimental coefficients and to acceptance of the view
that turbulence of the stream plays a decisive role in
the process of dissipation of mechanical energy of a
compressible fluid.

A second factor which may be responsible for dis-
sipation—the increase in pressure in a region where
the stream changes direction—has been noted, but has
not received the attention it deserves, although for
compressible fluids it should be decisive.

The purpose of the present article is to analyze the
influence of pressure increase, in a region where the
stream changes direction, on the process of dissipation
of mechanical energy of a compressible fluid.

The presence of gradients along the y axis (Fig. 1)
of the low parameters (pressure, temperature, and
velocity) in the region of a change in direction are
evidence that there is a process of transformation of
the kinetic energy of a stream arriving at an obstacle
into pressure potential energy, with subsequent trans-
formation into kinetic energy of the stream in the new
direction, i.e., processes without which it is impos-
sible to explain the very process of change of direction
of the stream. The value of the pressure along the x
axis in the above region is also different. The pres-
sure at the point b is less than at the point a. There-
fore the plane of equal pressures is located at an an-
gle B8 relative to the x axis, which, together with the
deformation, leads to a displacement of the specific
volume along the X axis in the region of change of di-
rection, because of the pressure differences on the
area elements f; and f' of the elementary volume. Be-
cause the equal pressure plane is inclined at an angle
B to the x axis, the velocity component, which is at-
tenuated by the transformation of kinetic energy of the
stream arriving at an obstacle into potential pressure
energy while traversing a region where there are gra-
dients of the flow parameters, mustbe calculated from
the formula

u=u, sin (@a—§). (H)

The presence of viscosity and thermal conductivity
in a compressible fluid causes dissipation of mechani-
cal energy of the stream when it traverses a region
where there are gradients of the flow parameters,
i.e., irreversible processes transforming mechanical
energy of the stream into thermal energy.
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Fig. 1, Distribution of the flow parameters in a

region where the stream direction changes: 1,2)

the flow velocity at the entrance and exit of the re-

gion, respectively; 3,;4) the static pressure along
the x and y axes; respectively.

We shall examine the process of dissipation of me-
chanical energy of the stream in passing through a re-
gion inwhich there are gradients of the flow parameters
from the point of view of molecular physics. In the
flow of a gas over an obstacle the compression and ex-
pansion is accompanied by a temperature change. The
time in which this change occurs is determined by the
dimensions of the obstacle and the stream velocity. If
these time intervals are equal to or less than the re-
laxation time required to establish equilibrium in all the
degrees of freedom of the molecules of the gas when
there is a deviation from the equilibrium condition,
then the transmission of energy from the part of the
gas which possesses greater heat capacity to the part
possessing less heat capacity will be an irreversible
process and the entropy of the gas will increase. This
is due to the viscosity and thermal conductivity postu-
lated in gases with vibrational heat capacity. When a
sudden change in the parameters of the gas occurs,
the degrees of freedom of the molecules acquire an
energy level corresponding to the new state.

The exchange of energy of translational and rota-
tional motion of the molecules occurs at a high rate,
since even simple collisions between molecules lead
to a substantial change in their translational and ro-
tational motion. On the other hand, the process of re-
distribution of vibrational energy occurs relatively
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slowly, so that equilibrium is considerably delayed for
this degree of freedom. Therefore, the translational
and rotational degrees of freedom are active, while
the vibrational is inactive. The internal energy cor-
responding to the active degrees of freedom changes
almost continuously, since the transition occurs at
distances of the order of several molecular mean free
paths.
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‘Fig. 2, Dependence of the relative

entropy increase AS' on the velocity

u (m/sec) when the flow is brought
to rest.

It may be shown that at every point of a free stream
e+ pp= 541 RT. (2)

For a diatomic gas, 8z = 7/2.

The energy of unit mass, corresponding to the in-
active degrees of freedom (e; = cy;Tj), is not e, =
= ¢y, T and is not necessarily a function of the local
temperature. Dividing the specific heat into parts
corresponding to the active and to the inactive degrees
of freedom, we may write

c,=¢C c
v va'l‘ vy

Cp =.Cva+cvi+R’

Cog =Cy + R, @)
Y =Cpllys
Yo = Cpa/cva' (4)

When there is an abrupt change in the parameters
of the working substance, and during establishment of
equilibrium, the temperature corresponding to the in-
active degrees of freedom will depend on the current
value of the temperature according to the law

aTi
5 —x(T—T). ®)

We shall examine the phenomenon of relaxation in
a steady subsonic stream. If the x axis is directed
along the stream tubes at a point where the cross sec-
tion area is F_, then we may write the equations of
motion in the form

pqF, = const,
g __ 1o
as p 3S’

1
¢, T+ ¢y, T; + «—é—qz =c, Ty (6)
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where

07
=oRT: (T —T)).
p=pKL; @ 3 % ( 0

For very rapid compression
1
¢ Tit ) q° == ¢ Ts (7)

By replacing p by Cpgs the equations reduce to a form
similar to the usual isentropic equations. Therefore,

Vo (v 1) T
po/pr = (To/T)) s PP =001 . (8)

We note here that yg > y; this indicates that there are
processes dissipating the mechanical energy, and that
there is an increase of entropy. The corresponding
entropy increase is

¢, dT ¢, dT;
AS = a i ,
)7 T,

since q = 0 in this process, we may write it in the
form

A S = R log (po/p,). )

Taking account of the viscosity and thermal conduc-
tivity of the working fluid, and using the equations of
gas dynamics, we arrive at the equation of the adia-
batic curve, allowing for the dissipation of mechani-
cal energy,

Ayl
p/P= (T':/Tl)vw fva ):

obtained by examining the molecular theory of flow
deceleration.
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Fig. 3. Theoretical (broken lines) and
experimental (continuous lines) depen-
dences of the pressure loss on the
velocity u (m/sec) of streams of dry
air with temperature 300 (1), 500 (2),
700 (3) and 1000° K (4), when the
direction is changed by 90°,

In order to examine the change in the parameters
of the working fluid when it slows down in the region
of change in flow direction, along each streamline we
use the first integrals of the equations of continuity,
momentum, and entropy for the plane stationary case;
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these have the following form [1] (with subscripts 1
and 2 for the initial and final states, respectively):

Uy == Py Uy,

ou

o
ul 4 du

P2 Uy ((1)2 +—2—)——3—nuﬂ-—

P+ pau—

02
4 2
_3_ :pl+p1ulv

ar
—""(1_':91”1 (0)1—\—

X

u\
-1 (10)

;

Bringing in the thermodynamic relation for the
enthalpy of a perfect gas

=Y v, (11)
v—1

we seek a solution in the form
p1 (oo™ = py (1po)™. (12)
The solution has the following form:

In (F+C—Aus)—In p,
In (I/p)—In {u,/A)

In (F4C—Aus)—In g
> T (1/s0—in (u,7A)
= (F - C —Au,) ﬂ . (13)
4
where
4 du )
A=pu; C=~3~n71? F=p+pud

In this case we also arrive at an equation of the Pois-
son type with an adiabatic exponent which takes dissi-
pation processes into account.

The theory of dissipation of the mechanical energy
of a subsonic stream of compressible fluid, when it
is decelerated in a region where the stream direction
changes has been confirmed experimentally by Kan-
trowitz [2, 3], who investigated this process in a sub-
sonic compressible stream of CO,.

The gas was accelerated from a state of restin a
reservoir, and flowed at subsonic velocity over a to-
tal pressure tube. The length of the reservoir nozzle
7as such that in it the gas parameters varied very
Jowly in comparison with the relaxation time, i.e.,
the process was isentropic. On the other hand, the
flow was decelerated abruptly ahead of the total pres-
sure tube, and the duration of this compression was
comparable with the relaxationtime, a situation which,
as shown above, leads to dissipation of the mechanical
energy of the stream and to an increase in entropy.
Total head tubes of two diameters, 0.46 and 0,76 mm,
were used in the experiment. Figure 2 shows the re-
lationship of AS', the increase in entropy, as deter-
mined by calculations from the measured parameters
of the working fluid before stagnating in the reservoir
and after stagnating at the total head tube, to the cal-
culated entropy increase which would be obtained if
the vibrational degree of freedom were completely
frozen.
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Fig. 4. Dependence of the entropy increase AS
(J/kg - deg) of a stream of dry air on its veloc-
ity u (m/sec), when its direction is changed by 90°,
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The deceleration of a stream of compressible fluid
in the region of a change of flow direction, when the
vibrational degree of freedom is "frozen," proceeds
along the Michelson line

Py —Py dp )
p—po= 1=} x
YV, —V, (av S,

AN L A YV _
x (V= Vo+ 2(6‘,2 |Wi=vow—v).

The parameters of the working fluid change to a
nonequilibrinm state, determined by anonequilibrium
Hugoniot curve and then slowly change to an equilib-
rium state, determined by an equilibrium Hugoniot
curve, while, in the absence of "freezing" of the vi-
brational degree of freedom, the final parameters of
the working fluid would be determined by a Poisson
curve. It should be noted that when there is a change
of the parameters of the working fluid with "frozen"
vibrational degree of freedom the final equilibrium
state, does not depend on the path of the transition,
and is determined by the two curves with coordinates
w, S, passing through the initial state point of the par-
ameters: a) the curve which is the geometrical locus
of the points representing the state of the working
fluid in a steady flow when it passes through a region
where there are gradients of the flow parameters and
there are no external forces between the initial and
the final states; b) a curve which is the geometrical
representation of the simultaneous solution of the en-
ergy equation for the adiabatic case and the flow con-
tinuity equation [4].

When there is no "freezing" of the vibrational de-
gree of freedom, the second curve will be isentropic.
However, in practice it is difficult to calculate dissi-
pation of mechanical energy with specific values of
the gradients of the flow parameters for every stream-
line. Therefore, in calculating the local resistances,
whose results will be presented below, the assumption
was made, that all the streamlines have the same
values of the gradients of the flow parameters.

A second assumption made in the calculations pos-
tulates that the working fluid returns after decelera-
tion to an equilibrium condition in the region where
there has been a change of direction, i.e., the decel-
eration process proceeds along an equilibrium Hugo-
niot curve.
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The calculation was performed according to the
following scheme:

1) calculation of nonisentropic deceleration of the
flow in the change of direction region according to an
equilibrium Hugoniot curve.

2) calculation of the nonisentropic change of the
parameters of the working fluid during transformation
of the potential pressure energy into kinetic energy of
the stream in the new direction.

The boundary condition in the process of expansion
of the working fluid in the new direction was that the
two flow equations—the continuity and energy equations
(the conservation of momentum equation is not satis-
fied because there are dissipation processes)—should
be satisfied after change of direction. Simultaneous
solution of the continuity and energy equations for the
case when the first two terms on the left side of the
equation represent the difference in entropy in a non-
isentropic process, gives the boundary condition in
the form

up

c,Te—c, Ty + 3 X

v, )
¢ _ 1 | =AST.. 15
X ( v 1 2 (15)

1

Figure 3 shows the results of calculation for
streams of dry air of density p ~ 19 kg/m3 with tem-
peratures (300,700 and 1000° K), when the direction
is changed by 90°. For comparison, the curves calcu-
lated from the experimental local resistance coeffi-
cients are also given. The results show that as the
temperature increases, the pressure loss decreases.
However, we should not draw the conclusions from
this that the role of the dissipation processes decreases
as the temperature increases (this would be illogical,
since the viscosity and thermal conductivity of the
working third increase as the temperature increases).
The influence of the processes of dissipation of me-
chanical cnergy is estimated by the increase in the
entropy of the flow, and, as is seen from Fig. 4, the
increase in entropy is proportional to the stream tem-
perature.

The dependence obtained of local pressure losses
on the stream temperature may be explained by the
fact that in the process of expansion of a stream heing
decelerated in a region where its direction is changed,
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forming two streams with the same density but differ-
ent temperatures (and therefore different pressures),
the change in density of the streams will not be the
same. From the expression

P00 = (p, 'pl)l Y

it is not difficult to see that the change in density of

the stream with the lower temperature (and therefore
also with the lower pressure) is considerably greater
than the change in density of the stream with the higher
temperature. The result is that to conserve the con-
tinuity of the stream, i.e., to satisfy the equality

piuy = pouy = const, a larger velocity must be communi-
cated to the stream with the lower temperature, be-
cause part of the pressure potential energy has been
transformed into kinetic energy of motion of the stream
in the new direction, i.e., the condition of continuity,
after expansion of the stream in the new direction,

will be satisfied at a smaller pressure.

NOTATION

« is the angle through which the stream direction
is changed; pg, py, T, is the stagnation pressure,
density, and temperature of the stream; p, p, T are
the pressure, density, and temperature of the stream;
u is the flow velocity; cy, cp are the heat capacities
at constant volume and constant pressure, respective-
ly; eq, e; are the energy of unit mass of the active and
inactive degrees of freedom, respectively; q is energy
supplied; 1 is kinematic viscosity; ® is the thermal
conductivity; R is the gas constant; S is the entropy;

v is the adiabatic exponent; y is the delay coefficient.
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